Optimasi XGBoost untuk Identifikasi Wilayah Prioritas Mitigasi Banjir di Kabupaten Sigi menggunakan Metode Particle Swarm Optimization
DOI:
https://doi.org/10.38035/jmpis.v7i1.6948Keywords:
XGBoost, Particle Swarm Optimization (PSO), Mitigasi Banjir, Klasifikasi, Kabupaten SigiAbstract
Kabupaten Sigi, Sulawesi Tengah, sering mengalami banjir hidrometeorologi akibat kondisi geografis yang rawan, menyebabkan kerugian infrastruktur dan mengancam keselamatan jiwa. Penelitian ini bertujuan mengembangkan model klasifikasi untuk mengidentifikasi wilayah prioritas mitigasi banjir dengan menggabungkan algoritma Extreme Gradient Boosting (XGBoost) dan metode Particle Swarm Optimization (PSO). Data yang digunakan mencakup curah hujan, limpasan permukaan, kelembapan tanah, elevasi, kemiringan lereng, dan data historis banjir. Model dasar XGBoost menunjukkan performa baik dengan akurasi 90,32%, F1-score 0,9057, dan AUC 0,9278. Setelah dilakukan optimasi hyperparameter menggunakan PSO, performa meningkat signifikan dengan akurasi 95,2%, F1-score 0,948, dan AUC 0,962. Hasil ini membuktikan bahwa PSO efektif dalam meningkatkan kemampuan model dalam mengklasifikasikan risiko banjir menjadi tiga kategori (rendah, sedang, tinggi). Kesimpulannya, integrasi XGBoost dan PSO mampu memberikan dasar ilmiah yang kuat bagi perencanaan mitigasi banjir yang lebih akurat dan efisien. Disarankan untuk mengintegrasikan model ini dengan sistem peringatan dini dan pembaruan data real-time guna memperkuat respons kebencanaan.
References
Abedi, R., Costache, R., Shafizadeh-Moghadam, H., & Pham, Q. B. (2022). Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto International, 37(19), 5479–5496. https://doi.org/10.1080/10106049.2021.1920636.
Badan Pusat Statistik. (2024). Kabupaten Sigi Dalam Angka 2023. BPS Kabupaten Sigi. https://sigikab.bps.go.id/id/publication/2023/02/28/d0249f41cde7c5c02ff591d1/kabupaten-sigi-dalam-angka-2023.html.
Chang, Y. (2020). Flash flood susceptibility assessment based on geodetector, certainty factor, and logistic regression analyses in Fujian Province, China. ISPRS International Journal of Geo-Information, 9(12), 1–22. https://doi.org/10.3390/ijgi9120748.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785.
El Haou, M., Ourribane, M., Ismaili, M., Abdelrahman, K., Fnais, M. S., Krimissa, S., ... & Namous, M. (2025). Advanced GIS-based modeling for flood hazards mapping in urban semi-arid regions: Insights from Beni Mellal, Morocco. Frontiers in Environmental Science, 13(June), 1–23. https://doi.org/10.3389/fenvs.2025.1585926.
Gad, A. G. (2022). Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Archives of Computational Methods in Engineering, 29(5). https://doi.org/10.1007/s11831-021-09694-4.
Hoang, D.-V., & Liou, Y.-A. (2024). Elevating flash flood prediction accuracy: A synergistic approach with PSO and GA optimization. Natural Hazards and Earth System Sciences Discussions, 1–26. https://nhess.copernicus.org/preprints/nhess-2024-215/
IPCC. (2007). Report from Intergovernmental Panel on Climate Change. http://www.ipcc.ch
Julian, B., & Roland, L. (2021). U-FLOOD – Topographic deep learning for predicting urban pluvial flood water depth. Journal of Hydrology, 603(August), 126898. https://doi.org/10.1016/j.jhydrol.2021.126898.
Kanani-Sadat, Y., Safari, A., Nasseri, M., & Homayouni, S. (2024). A novel explainable PSO-XGBoost model for regional flood frequency analysis at a national scale: Exploring spatial heterogeneity in flood drivers. Journal of Hydrology, 638, 131493. https://doi.org/10.1016/j.jhydrol.2024.131493.
Maulita, M., Nurdin, N., & Taufiq, T. (2024). Mapping of flood and landslide prone areas using composite mapping analysis method based on geographic information system in East Aceh. SISTEMASI, 13(6), 2359–2374.
Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., & Nauss, T. (2018). Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software, 101, 1–9.
Mohamad Herdian Bhakti, R., Saeful Bachri, O., & Sofian Efendi, F. (2021). Optimasi K-Means dengan Particle Swarm Optimization pada Pengelompokkan Daerah Stunting. Jurnal Ilmiah Intech: Information Technology Journal of UMUS, 3(2), 95–101.
Pusat Data Informasi dan Komunikasi Kebencanaan. (2024). Buku Data Bencana Indonesia Tahun 2023. Badan Nasional Penanggulangan Bencana (BNPB). https://www.bnpb.go.id/buku/buku-data-bencana-indonesia-tahun-2023.
Pusat Krisis Kesehatan. (2024). Banjir di Sigi, Sulawesi Tengah, 11-04-2024. https://penanggulangankrisis.kemkes.go.id/Banjir-di-SIGI-SULAWESI-TENGAH-11-04-2024-24.
Sarwar, J., Khan, S. A., Azmat, M., & Khan, F. (2024). A comparative analysis of feature selection models for spatial analysis of floods using hybrid metaheuristic and machine learning models. Environmental Science and Pollution Research, 31(23), 33495–33514.
Sengupta, S., Basak, S., & Peters, R. A. (2019). Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives. Machine Learning and Knowledge Extraction, 1(1), 157–191. https://doi.org/10.3390/make1010010.
Sigi, B. P. S. K. (2023). Kabupaten Sigi Dalam Angka 2023. BPS Kabupaten Sigi.
Tuyen, D. N., Tuan, T. M., Son, L. H., Ngan, T. T., Giang, N. L., Thong, P. H., ... & Kanavos, A. (2021). A novel approach combining particle swarm optimization and deep learning for flash flood detection from satellite images. Mathematics, 9(22), 2846. https://doi.org/10.3390/math9222846.
Widya, L. K., Rezaie, F., Lee, W., Lee, C.-W., Nurwatik, N., & Lee, S. (2024). Flood susceptibility mapping of Cheongju, South Korea based on the integration of environmental factors using various machine learning approaches. Journal of Environmental Management, 364, 121291. https://doi.org/10.1016/j.jenvman.2023.121291.
Zeng, X., Long, J., Tian, S., & Xiao, G. (2023). Random area pixel variation and random area transform for visible-infrared cross-modal pedestrian re-identification. Expert Systems with Applications, 215, 119307. https://doi.org/10.1016/j.eswa.2023.119307.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Angelin Kristiani Tarese, Dwi Shinta Angreni

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak cipta :
Penulis yang mempublikasikan manuskripnya di jurnal ini menyetujui ketentuan berikut:
- Hak cipta pada setiap artikel adalah milik penulis.
- Penulis mengakui bahwa Jurnal Manajemen Pendidikan dan Ilmu Sosial (JMPIS) berhak menjadi yang pertama menerbitkan dengan lisensi Creative Commons Attribution 4.0 International (Attribution 4.0 International CC BY 4.0) .
- Penulis dapat mengirimkan artikel secara terpisah, mengatur distribusi non-eksklusif manuskrip yang telah diterbitkan dalam jurnal ini ke versi lain (misalnya, dikirim ke repositori institusi penulis, publikasi ke dalam buku, dll.), dengan mengakui bahwa manuskrip telah diterbitkan pertama kali di Jurnal Manajemen Pendidikan dan Ilmu Sosial (JMPIS).









































































