

Analysis of The Effect of On-Time Performance, Safety, Comfort, And Accessibility on E-WOM Through Passenger Satisfaction at Cililitan Terminal

Nur Prasetyo¹, Dian Artanti Arubusman², Rully Indrawan³, Djamal Subastian⁴, Edi Abdurachman⁵

¹Institute of Transportation and Logistics Trisakti, Jakarta, Indonesia, hopi.tyo7@gmail.com

²Institute of Transportation and Logistics Trisakti, Jakarta, Indonesia, dianartanti0105@gmail.com

³Institute of Transportation and Logistics Trisakti, Jakarta, Indonesia, rullyindrawan@gmail.com

⁴Institute of Transportation and Logistics Trisakti, Jakarta, Indonesia, djamalsubastian@gmail.com

⁵Institute of Transportation and Logistics Trisakti, Jakarta, Indonesia, edia@itltrisakti.ac.id

Corresponding Author: hopi.tyo7@gmail.com¹

Abstract: This study investigates the effects of on-time performance, safety, comfort, and accessibility on electronic Word of Mouth (e-WOM) through passenger satisfaction at Cililitan Bus Terminal. Using a quantitative approach, data were collected from 270 respondents through a structured questionnaire and analyzed with Partial Least Squares Structural Equation Modeling (PLS-SEM). The results show that on-time performance, comfort, and accessibility significantly influence passenger satisfaction, while safety does not. Furthermore, on-time performance and comfort have a direct and significant impact on e-WOM, whereas safety and accessibility do not. Passenger satisfaction serves as a mediating variable, strengthening the relationship between service quality factors and e-WOM. These findings highlight the importance of punctuality, comfort, and ease of access in enhancing passenger experience and fostering loyalty through positive word of mouth. Terminal operators are encouraged to focus on improving these aspects to ensure sustainable service quality and customer engagement.

Keywords: On-Time Performance, Safety, Comfort, Accessibility, Passenger Satisfaction, E-Wom, Loyalty, Bus Terminal.

INTRODUCTION

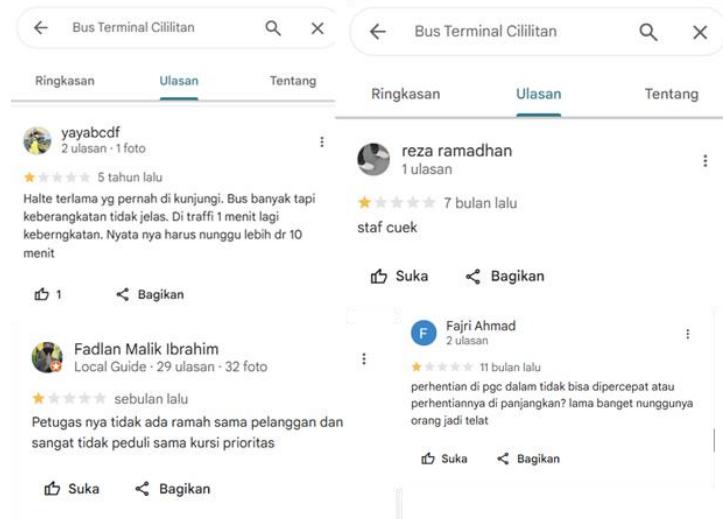

The number of motor vehicles in DKI Jakarta continues to increase every year, reaching more than 12 million units in 2024 (BPS, 2025). The imbalance between the number of vehicles and road capacity has led to severe traffic congestion. This situation indicates the low public interest in using public transportation, which is still perceived as unreliable, unsafe, and uncomfortable. The Provincial Government of DKI Jakarta has implemented various innovations, including the development of transportation hubs such as bus terminals, to encourage a shift from private vehicle use to public transport. According to data from the Central Statistics Agency (BPS) in 2024, the number of motor vehicles from 2019 to 2024 in DKI Jakarta Province is illustrated in the following figure.

Table 1. Number of Motor Vehicles by Type (Units)

City	Number of Motor Vehicles by Type (units) in DKI Jakarta Province					
	2019	2020	2021	2022	2023	2024
Passenger Cars	3,310,426	3,365,467	4,111,231	2,120,532	2,272,301	2,333,391
Buses	34,905	35,266	342,667	33,151	34,877	36,381
Trucks	669,724	679,708	785,600	475,488	500,146	520,051
Motorcycles	15,868,191	16,141,380	16,519,197	8,550,413	8,889,450	9,167,512
Total	19,883,246	20,221,821	21,758,695	11,179,584	11,696,774	12,057,335

Source: Research data

Cililitan Bus Terminal, categorized as a type B terminal, plays an important role in serving interprovincial and urban transportation in East Jakarta. Its strategic location adjacent to a commercial center should ideally support both transportation functions and socio-economic interactions. However, user reviews on online platforms indicate negative perceptions of the terminal's services. Complaints include delays in bus departures, insufficient security, limited facility comfort, and poor accessibility for vulnerable groups. These issues not only affect passenger satisfaction but also trigger negative electronic word of mouth (e-WOM), which undermines the terminal's overall image.

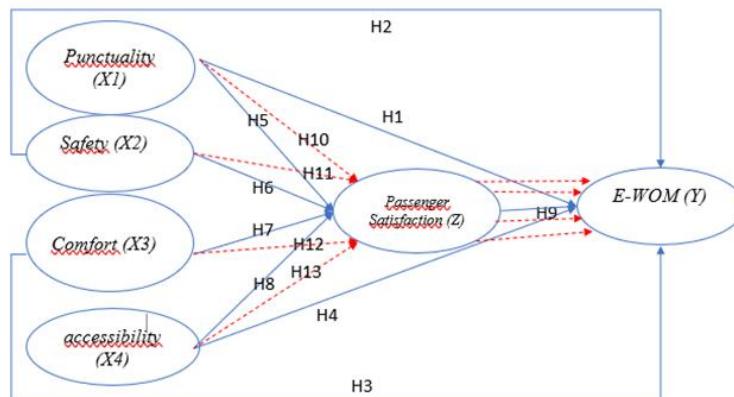
Source: Google Maps

Figure 1. Reviews of Cililitan Bus Terminal on Google Maps

Previous studies have highlighted the importance of public transport service quality in influencing passenger satisfaction and post-consumption behavior. Punctuality has been proven to be a key indicator of service reliability (Allen et al., 2019), safety affects perceptions of accessibility and reuse decisions (Friman et al., 2020), comfort plays a major role in shaping positive user experiences (Hamzah et al., 2023), while accessibility determines the ease of user interaction with the transport system. However, most studies have focused on mass transport systems such as BRT, MRT, or LRT, while research on urban bus terminals particularly Cililitan Bus Terminal, remains limited.

Therefore, a research gap exists in understanding how punctuality, safety, comfort, and accessibility influence passenger satisfaction, and how satisfaction, in turn, contributes to the formation of electronic word of mouth (e-WOM). This gap is crucial, as e-WOM has become an important indicator of service reputation that shapes public transport mode preferences. Accordingly, this study aims to analyze:

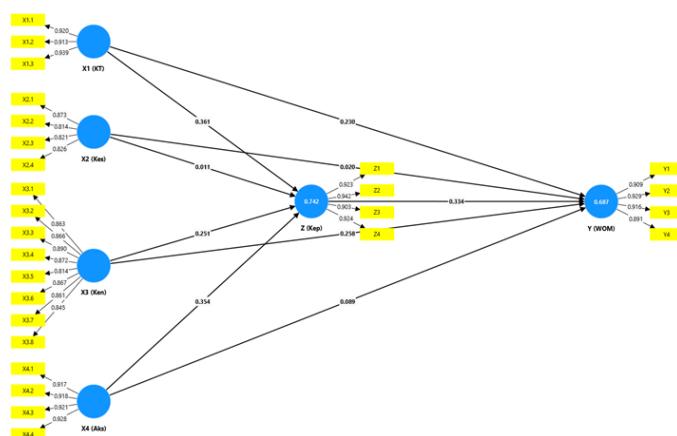
- Analyze the effect of punctuality on electronic word of mouth (e-WOM) among users of Cililitan Bus Terminal.


- b) Analyze the effect of safety on electronic word of mouth (e-WOM) among users of Cililitan Bus Terminal.
- c) Analyze the effect of comfort on electronic word of mouth (e-WOM) among users of Cililitan Bus Terminal.
- d) Analyze the effect of accessibility on electronic word of mouth (e-WOM) among users of Cililitan Bus Terminal.
- e) Analyze the effect of punctuality on passenger satisfaction at Cililitan Bus Terminal.
- f) Analyze the effect of safety on passenger satisfaction at Cililitan Bus Terminal.
- g) Analyze the effect of comfort on passenger satisfaction at Cililitan Bus Terminal.
- h) Analyze the effect of accessibility on passenger satisfaction at Cililitan Bus Terminal.
- i) Analyze the effect of passenger satisfaction on electronic word of mouth (e-WOM) at Cililitan Bus Terminal.
- j) Examine the indirect effect of punctuality on e-WOM through passenger satisfaction.
- k) Examine the indirect effect of safety on e-WOM through passenger satisfaction.
- l) Examine the indirect effect of comfort on e-WOM through passenger satisfaction.
- m) Examine the indirect effect of accessibility on e-WOM through passenger satisfaction.

METHOD

This study is a quantitative research employing a survey method through the distribution of questionnaires. The survey was conducted directly within the Cililitan Bus Terminal area and nearby bus stops to ensure that the respondents were relevant and had firsthand experience using the public transportation services at the terminal. The research context aligns with the characteristics of service quality studies, which assess customer perceptions of service providers based on their actual usage experiences (Hamzah et al., 2023).

This research was carried out at Cililitan Bus Terminal, East Jakarta, over a period of three months, from July 2025 to September 2025. The Cililitan Bus Terminal is one of the main terminals in the Jakarta metropolitan area, integrated with the Pusat Grosir Cililitan (PGC), and serves as a busy hub of public transportation activities. This location was chosen due to its large and diverse number of passengers, making it suitable as a research site for studying perceptions of transportation service quality.


The population in this study consists of all public transport passengers who use the facilities and services at Cililitan Bus Terminal. Based on passenger data from July 2025, which recorded 53,450 users, a portion of this population was selected as research respondents. The sample of this study comprises a segment of terminal passengers chosen to represent the overall population. According to Gefen, Rigdon, and Straub (2011), the PLS method remains stable even with relatively small sample sizes, but it is recommended that the minimum sample size be ten times the largest number of indicators in the endogenous variable. Meanwhile, Hair, Black, Babin, and Anderson (2014) suggest that an ideal sample size can be obtained by multiplying the number of indicators by a factor between 5 and 10, depending on the model's complexity. Therefore, this study determined a sample size of $27 \times 10 = 270$ respondents.

Source: Research Results
Figure 2. Research Model

RESULTS AND DISCUSSION

The convergent validity assessment represents a crucial phase within exploratory or confirmatory factor analysis in multivariate statistical testing. Its main objective is to evaluate how effectively each indicator or construct truly reflects the concept it is meant to measure. In other words, it determines the degree to which observed variables converge in representing the same underlying factor. A commonly applied criterion in this evaluation is that an indicator is deemed valid when its loading factor exceeds 0.70, which indicates a strong correlation between the indicator and the latent construct it is intended to capture. The outcomes of the PLS model estimation used to assess these validity values are presented as follows:

Source: Research Results
Figure 3. Outer Model

Based on the findings of the validity analysis, the loading factor values illustrating the relationship between each variable and its corresponding indicators are presented as follows:

Table 2. Outer Loading

Variable	Indicator	Outer Loading	Indication
Punctuality	X1.1	0.92	VALID
	X1.2	0.913	
	X1.3	0.939	
Safety	X2.1	0.873	VALID
	X2.2	0.814	
	X2.3	0.821	
Comfort	X2.4	0.826	VALID
	X3.1	0.863	
	X3.2	0.866	
Accessibility	X3.3	0.89	VALID
	X3.4	0.872	
	X3.5	0.814	
	X3.6	0.867	VALID
	X3.7	0.861	
	X3.8	0.845	
Accessibility	X4.1	0.917	VALID

Variable	Indicator	Outer Loading	Indication
Passenger Satisfaction	X4.2	0.918	VALID
	X4.3	0.921	
	X4.4	0.928	
	Z1	0.923	
E-WOM	Z2	0.942	VALID
	Z3	0.903	
	Z4	0.924	
	Y1	0.909	
	Y2	0.929	VALID
	Y3	0.916	
	Y4	0.891	

Source: Research data

The table above presents the factor loading values for each construct indicator, which show varying magnitudes across the variables. Since all loading factor values exceed 0.7 (> 0.7), the indicators can be considered valid. In addition to loading factors, the assessment of convergent validity also employs the Average Variance Extracted (AVE) as an additional measure. AVE reflects the proportion of variance captured by a construct in relation to the variance attributed to measurement error. A construct is regarded as valid when its AVE value is greater than 0.50 (> 0.50). The results of the AVE values for each variable are shown as follows:

Table 3. AVE (Average Variance Extracted)

Research Variable	Average variance extracted (AVE)	Indication
X1 (Punctuality)	0.854	VALID
X2 (Safety)	0.696	VALID
X3 (Comfort)	0.74	VALID
X4 (Accessibility)	0.848	VALID
Y (E-WOM)	0.83	VALID
Z (Passenger Satisfaction)	0.853	VALID

Source: Research data

According to Ghazali and Latan (2015), the Average Variance Extracted (AVE) is employed to measure the convergent validity of a construct composed of reflective indicators. An AVE value of 0.50 or higher indicates that the construct is capable of explaining at least 50% of the variance in its observed indicators.

Furthermore, the reliability of each variable is evaluated using the Cronbach's Alpha and Composite Reliability (CR) values. A construct is considered to possess strong internal consistency when both its Cronbach's Alpha and Composite Reliability values exceed 0.70 (> 0.70), signifying that the indicators consistently measure the same underlying concept.

Table 4. Cronbach Alpha and Composite Reliability

	Cronbach's alpha	Composite reliability (rho_c)	Indication
X1 (Punctuality)	0.914	0.946	
X2 (Safety)	0.855	0.901	
X3 (Comfort)	0.95	0.958	Reliable
X4 (Accessibility)	0.94	0.957	
Y (E-WOM)	0.932	0.951	

Z (Passenger Satisfaction)	0.942	0.959
Source: Research data		

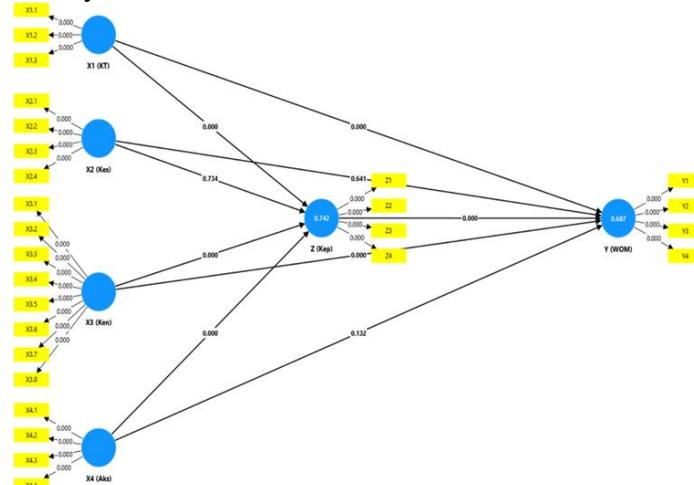

Based on the test results, all constructs have Cronbach's Alpha values above the minimum threshold (≥ 0.6 for exploratory and ≥ 0.7 for confirmatory), and Composite Reliability values >0.7 . This indicates that the research instrument demonstrates good internal consistency, is reliable, and suitable for use, so the collected data can be considered consistent and trustworthy for further analysis.

Table 5. The Coefficient of Determination (R^2)

	R-square	R-square adjusted
Y (E-WOM)	0.687	0.681
Z (Kep)	0.742	0.738

Source: Research data

The R-Square values indicate that e-WOM (0.687) and Satisfaction (0.742) fall into the strong category. This means the model can explain 68.7% of the variation in e-WOM and 74.2% of the variation in Satisfaction, while the remaining variation is influenced by factors outside the model. These results confirm that the structural model has a high predictive power for the main variables of the study.

Source: Research Results

Figure 4. Bootstrapping Model

This stage tests the hypotheses to assess the significance of relationships between variables in the model, including the independent variables (Punctuality, Safety, Comfort, Accessibility), the mediator (User Satisfaction), and the dependent variable (e-WOM). The testing was conducted using PLS bootstrapping (SmartPLS 4.1.1), utilizing the original sample values, T-statistics, and P-values. A hypothesis is accepted if the T-statistic exceeds the critical t-value and the P-value is less than 0.05; otherwise, the hypothesis is rejected.

Table 6. Bootstrapping Result

Hypothesis	Path	Original sample (O)	Sample mean (M)	Standard deviation (STDEV)	T statistics (O/STDEV)	P values
H1	X1 (KT) -> Y (E-WOM)	0.23	0.224	0.065	3.547	0.000
H2	X2 (Kes) -> Y (E-WOM)	0.02	0.021	0.042	0.466	0.641
H3	X3 (Ken) -> Y (E-WOM)	0.258	0.259	0.072	3.61	0.000
H4	X4 (Aks) -> Y (E-WOM)	0.089	0.086	0.059	1.505	0.132

H5	X1 (KT) -> Z (Kep)	0.361	0.358	0.053	6.775	0.000
H6	X2 (Kes) -> Z (Kep)	0.011	0.012	0.032	0.34	0.734
H7	X3 (Ken) -> Z (Kep)	0.251	0.251	0.056	4.522	0.000
H8	X4 (Aks) -> Z (Kep)	0.354	0.356	0.055	6.481	0.000
H9	Z (Kep) -> Y (E-WOM)	0.334	0.339	0.094	3.543	0.000
H10	X1 (KT) -> Z (Kep) -> Y (E-WOM)	0.121	0.122	0.041	2.929	0.003
H11	X2 (Kes) -> Z (Kep) -> Y (E-WOM)	0.004	0.005	0.011	0.322	0.747
H12	X3 (Ken) -> Z (Kep) -> Y (E-WOM)	0.084	0.087	0.035	2.418	0.016
H13	X4 (Aks) -> Z (Kep) -> Y (E-WOM)	0.118	0.12	0.037	3.231	0.001

Source: Research data

1. Hypothesis 1

The results of hypothesis test H1 indicate that timeliness (X1) has a significant effect on e-WOM (Y) with a coefficient of 0.23, a T-statistic of 3.547, and a P-value of 0.000. This means that the better the timeliness of services at the Cililitan Bus Terminal, the higher the tendency of users to give positive recommendations. This finding is consistent with studies by Ismail et al. (2023), Nugroho (2023), and Hamzah (2023), which state that schedule reliability enhances satisfaction and positive e-WOM. From a managerial perspective, improving schedule accuracy through digital boards or mobile applications can strengthen the terminal's image and reputation.

2. Hypothesis 2

The results of hypothesis test H2 indicate that safety (X2) has no significant effect on e-WOM (Y) with a coefficient of 0.02, T-statistic 0.466, and P-value 0.641. This suggests that perceptions of security officers, surveillance facilities, and risk prevention do not strongly encourage users to recommend the terminal. Consistent with Chaniotakis & Lymperopoulos (2009) and Currie et al. (2013), safety functions more as a basic service requirement that supports user retention rather than promoting voluntary recommendations. Therefore, while safety must remain a service foundation, improving emotional aspects such as comfort, staff friendliness, and waiting experience is essential to strengthen positive e-WOM.

3. Hypothesis 3

The results of hypothesis test H3 show that comfort (X3) has a positive and significant effect on e-WOM (Y) with a coefficient of 0.258, T-statistic 3.61, and P-value 0.000. This means that users who feel comfortable with terminal facilities—such as cleanliness, seating, staff friendliness, and accessibility—are more likely to share positive experiences. This finding aligns with Sogbe et al. (2025), Kumar Yadav et al. (2025), and Khoa (2023), who highlight comfort as a key factor driving satisfaction and voluntary e-WOM. From a managerial standpoint, enhancing cleanliness, seating comfort, and staff hospitality can strengthen the terminal's image through organic word-of-mouth promotion.

4. Hypothesis 4

The results of hypothesis test H4 show that accessibility (X4) has a positive but not significant effect on electronic Word of Mouth (Y), with a coefficient of 0.089, T-statistic of 1.505, and P-value of 0.132. This indicates that ease of physical access, supporting

transportation, distance, and travel time have not been sufficient to encourage users to recommend Cililitan Bus Terminal voluntarily. This finding aligns with Chan et al. (2021) and Eboli & Mazzulla (2011), who argue that accessibility is a basic requirement rather than a key driver of e-WOM. From a managerial perspective, efforts to enhance e-WOM should focus on service aspects that create positive emotional experiences, such as comfort and staff friendliness.

5. Hypothesis 5

The results of hypothesis H5 indicate that punctuality (X1) has a positive and significant effect on user satisfaction (Z), with a coefficient of 0.361, a t-statistic of 6.775, and a p-value of 0.000. This means that the more reliable the bus arrival and departure schedules, the higher the level of user satisfaction. This finding is consistent with the travel time reliability theory, which emphasizes punctuality as a key factor in public transportation service quality (Soza-Parra et al., 2019; Esmailpour, 2020). From a managerial perspective, maintaining accurate schedules and providing real-time information can enhance user satisfaction while strengthening Terminal Cililitan's reputation as a reliable service provider.

6. Hypothesis 6

The results of hypothesis H6 show that safety (X2) has no significant effect on user satisfaction (Z), with a coefficient of 0.011, a t-statistic of 0.34, and a p-value of 0.734. This indicates that while safety aspects are present, their influence is not strong enough to directly enhance user satisfaction. This aligns with the must-be attribute concept, where safety is viewed as a basic necessity that is expected but does not increase satisfaction. Therefore, terminal management should focus more on improving comfort, staff friendliness, and schedule punctuality to strengthen user satisfaction.

7. Hypothesis 7

The test results indicate that comfort (X3) has a positive and significant effect on user satisfaction (Z), with a coefficient of 0.251, t-statistic 4.522, and p-value 0.000. This means that the better users perceive cleanliness, facility comfort, staff friendliness, and accessibility for people with disabilities, the higher their satisfaction with terminal services. This finding aligns with Ubaidillah et al. (2022) and Sogbe et al. (2025), who emphasize that comfort is a key determinant of user satisfaction and loyalty. Practically, continuous improvement in comfort-related aspects is a crucial strategy for Terminal Cililitan to enhance user satisfaction.

8. Hypothesis 8

The test results show that accessibility (X4) has a positive and significant effect on user satisfaction (Z), with a coefficient of 0.354, t-statistic of 6.481, and p-value of 0.000. This indicates that easier physical access, transportation options, and travel time to Terminal Cililitan lead to higher user satisfaction. This finding supports Eboli and Mazzulla (2011), who highlight accessibility as a key factor in enhancing public transport user experience. From a managerial perspective, improving access facilities and supporting transportation systems should be a priority to strengthen user satisfaction.

9. Hypothesis 9

The results show that user satisfaction (Z) has a positive and significant effect on e-WOM (Y), with a coefficient of 0.334, t-statistic of 3.543, and p-value of 0.000. This means that the higher the level of satisfaction, the greater the likelihood that users will recommend Terminal Cililitan to others. This finding aligns with Ismail et al. (2023) and Nugroho (2023), who emphasize satisfaction as a key factor driving e-WOM in public transportation services. From a managerial perspective, improving user satisfaction can enhance the terminal's positive reputation through voluntary recommendations.

10. Hypothesis 10

The results show that Timeliness (X1), mediated by Satisfaction (Z), has a positive and significant effect on e-WOM (Y), with a coefficient of 0.121 and a p-value of 0.003. This means

that improved service timeliness enhances user satisfaction, which in turn encourages positive electronic word-of-mouth. The findings highlight that timeliness plays both operational and strategic roles in shaping the terminal's image. Therefore, maintaining reliable scheduling can serve as an effective strategy to strengthen the terminal's reputation.

11. Hypothesis 11

The results show that Safety (X2) has no significant effect on e-WOM (Y) through User Satisfaction (Z), with a coefficient of 0.004, t-statistic of 0.322, and p-value of 0.747. This indicates that while safety is essential, users perceive it as a basic requirement that does not directly enhance satisfaction or encourage recommendation behavior. This finding aligns with Ismael et al. (2021) and Guzman et al. (2024), who found that comfort, reliability, and accessibility have stronger impacts on satisfaction and e-WOM than safety. Practically, terminal management should maintain safety standards but focus on improving comfort and user experience to stimulate positive word-of-mouth.

12. Hypothesis 12

The results indicate that Comfort (X3) has an indirect and significant effect on e-WOM (Y) through User Satisfaction (Z), with a coefficient of 0.084 and a p-value of 0.016. This means that comfort enhances user satisfaction, which in turn drives positive word-of-mouth behavior toward Terminal Cililitan. This finding aligns with studies by Lättman et al. (2020), Ingvarsson et al. (2019), and Saha (2009), which emphasize satisfaction as a key mediator between comfort and e-WOM. From a managerial perspective, the terminal management should ensure consistent, user-centered comfort to maximize the positive e-WOM impact.

13. Hypothesis 13

The analysis shows that Accessibility (X4) has an indirect and significant effect on e-WOM (Y) through User Satisfaction (Z), with a coefficient of 0.118, a T-statistic of 3.231, and a p-value of 0.001. This indicates that better accessibility and efficient travel times enhance user satisfaction, which in turn drives positive e-WOM behavior. This finding aligns with studies by Wen et al. (2005) and Friman et al. (2020), highlighting satisfaction as a mediator between accessibility and users' intention to share positive experiences. Practically, Terminal Cililitan management should improve physical access and transport information to strengthen user satisfaction and encourage organic e-WOM.

CONCLUSION

This study examines the influence of punctuality, safety, comfort, and accessibility on user satisfaction and their impact on electronic word of mouth (e-WOM) at Cililitan Bus Terminal, East Jakarta. Using PLS-SEM analysis, the results indicate that punctuality, comfort, and accessibility have a positive and significant effect on user satisfaction, while safety does not show a significant impact. Furthermore, satisfaction mediates the relationship between punctuality, comfort, and accessibility with e-WOM, suggesting that when users feel satisfied with the overall service experience, they are more likely to share positive recommendations voluntarily.

These findings imply that enhancing punctuality, user comfort, and accessibility can significantly strengthen satisfaction and encourage positive e-WOM, which in turn contributes to the terminal's public image. Practically, the management should prioritize better schedule management, improved waiting area comfort and cleanliness, clear route information, and better intermodal access. Although safety did not have a significant direct effect, maintaining it as a fundamental service aspect remains essential to ensure sustainable service quality and long-term trust among users.

REFERENCE

Allen, J., Muñoz, J., & Ortúzar, J. de D. (2019). Understanding Public Transport Satisfaction: Using Maslow's Hierarchy of (Transit) Needs. *Transport Policy*, 81. <https://doi.org/10.1016/j.tranpol.2019.06.005>

Friman, M., Lättman, K., & Olsson, L. E. (2020). Public transport quality, safety, and perceived accessibility. *Sustainability (Switzerland)*, 12(9). <https://doi.org/10.3390/SU12093563>

Hamzah, M. I., Wahab, S. N., Abd Rashid, M. H., & Voon, B. H. (2023). Switching intention, WOM and quality of public transport services: A case of the Kuala Lumpur conurbation. *Multimodal Transportation*, 2(3), 100082

Handoko, T. Hani. (2010). Manajemen Personalia & Sumber daya Manusia. BPFE-Yogyakarta

Abenoza, R. F., Cats, O., & Susilo, Y. O. (2017). *Travel satisfaction with public transport: Determinants, user classes, regional disparities and their evolution. Transportation Research Part A: Policy and Practice*, 95(January), 64–84. <https://doi.org/10.1016/j.tra.2016.11.011>

Ubaidillah, N. Z., Sa'ad, N. H., Ismail, F., Nordin, N. A., Baharuddin, N. N., & Hassan, M. K. H. (2022). The Impact of Public Bus Service Quality on the Users' Satisfaction: Evidence from a Developing Asian City. *Review of Applied Socio-Economic Research*, 23(1), 83–96. <https://doi.org/10.54609/reaser.v23i1.185>

Van Lierop, D., Badami, M. G., & El-Geneidy, A. M. (2018). What influences satisfaction and loyalty in public transport? A review of the literature. *Transport Reviews*, 38(1), 52-72.

Elvik, R., Høye, A., Vaa, T., & Sørensen, M. (2009). *The Handbook of Road Safety Measures*. Emerald Group Publishing Limited.

Joewono, T. B., & Kubota, H. (2006). Safety and security improvement in public transportation based on public perception in developing countries. *IATSS Research*, 30(1), 86-100.

Spear, B. D. (1976). Generalized attribute variable for models of mode choice behavior, *Transportation Research Record: Journal of the Transportation Research Board*, 592, 6-11.

Stopher, P. R. (1969). A probability model of travel mode choice for the work journey. *Highway Research Record*, 283, 57-65.

Nathanail, E. (2008). Measuring the quality of service for passengers on the hellenic railways. *Transportation Research Part A: Policy and Practice*, 42(1), 48–66. <https://doi.org/https://doi.org/10.1016/j.tra.2007.06.006>

Sharaby, N., & Shiftan, Y. (2012). The impact of fare integration on travel behavior and transit ridership. *Transport Policy*, 21, 63-70.

Kotler, & Keller. (2016). *Manajemen Pemasaran* (13 ed.). (B. Sabran, Trans.) Jakarta: Erlangga.

Slack, N. J., & Singh, G. (2020). The effect of service quality on customer satisfaction and loyalty and the mediating role of customer satisfaction: Supermarkets in Fiji. *The TQM Journal*, 32(3), 543-558.

Kuncoro, D., Abimanyu, R., Kurniawan, R., & Umam, K. (2022). Analisis Tingkat Kepuasan Pelanggan Pada Pelayanan Lahan Parkir Menggunakan Metode Service Quality. *IMTechno: Journal of Industrial Management and Technology*, 3(2), 121-127.

Hair, JF, Black, WC, Babin, BJ dan Anderson, RE (2014) Analisis Data Multivariat. Edisi ke-7, Pearson Education, Upper Saddle River.